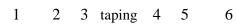
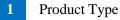


Wire Wound Chip Inductors

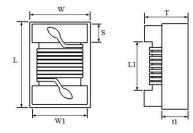
SWI1008CT/FT-KI Series

INTRODUCTION


The SWI series are wire wound chip inductors widely used in the communication applications such as cellular phones, cable modem, ADSL, repeaters, Bluetooth, and other electronic devices. The wire wound inductors advance in higher self resonate frequency, better Q factor, and much more stable performance.


FEATURES

- > Operating temperature -40 to +125°C for ceramic series and -40 to +85°C for ferrite series.
- Excellent solderability and resistance to soldering heat.
- Suitable for reflow soldering.
- ▶ High reliability and easy surface mount assembly.
- ➢ Wide range of inductance values are available for flexible needs.


PART NUMBER

SWI 1008 C T 1R0 J -

2 Chip Dimension

Size	Length (L)	Width (W)	Thickness (T)	Terminal (S)	(t ₁)
(inch)	(inch)	(inch)	(inch)	(inch)	(Ref.)
mm	mm	mm	mm	mm	mm
SWI 1008	(0.102 ± 0.008)	(0.083 ± 0.008)	(0.067 ± 0.008)	(0.020 ± 0.004)	0.70
2520	2.60 ± 0.20	2.10 ± 0.20	$1.70~\pm~0.20$	0.50 ± 0.10	0.70

- 3 Material Type C : Ceramic F : Ferrite
- 4 Inductance Value 1R0 = 1.0uH 100 = 10uH
- 5 Tolerance $G = \pm 2\%$ $J = \pm 5\%$ $K = \pm 10\%$
- 6 Internal Code

1 Scope

This specification applies to fixed inductors of the following types used in electronic equipment :

*Ceramic Type : For lower inductance with high Q factor at high frequency and stable circuit requirement.

*Ferrite Type : For higher inductance at lower frequency circuit requirement.

2 Construction

*Configuration

& Dimension : Please refer to the attached figures and tables.

*Terminals : Consist of Ag alloy followed by Nickel, then Au or Sn platting for easier soldering.

3 Operating Temperature Range

Operating Temperature Range is the scope of ambient temperature at which the inductor can be operated continuously at rated current.

*Temp. Range : Ceramic material : -40°C ~ +125°C : Ferrite material : -40°C ~ +85°C

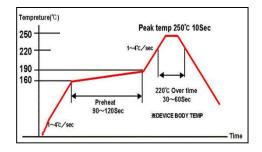
4 Ingredient of terminals electrode

→ 3rd Layer	Ceramic Type	Ferrite Type
2nd Layer	1 st Layer : Ag	Ag
■ 1st Layer ■ Termination	2 nd Layer : Nickel (Ni)	Nickel (Ni)
	3 rd Layer : Gold (Au)	Tin (Sn)

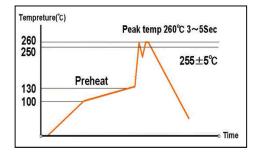
Characteristics

Standard Atmospheric Conditions

Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests are as follows:

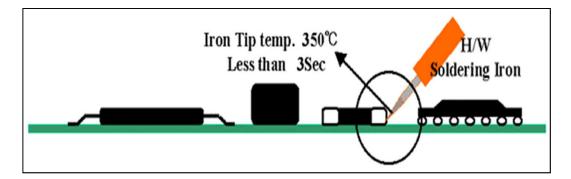

Ambient Temperature: $25^{\circ}C \pm 2^{\circ}C$ Relative Humidity: 60% to 70%Air Pressure: 86Kpa to 106Kpa

Temperature Profile


Reflow Temperature Profile

(Temperature of the mounted parts surface on the printed circuit board)

Recommended Peak Temperature : 250°C Max 250°C up /within 10secs Max. Reflow temperature : 260°C Gradient of temperature rise : av 1-4°C/sec Preheat : 160-190°C/within 90-120secs 220°C up /within 30-60secs Composition of solder Sn-3Ag-0.5Cu

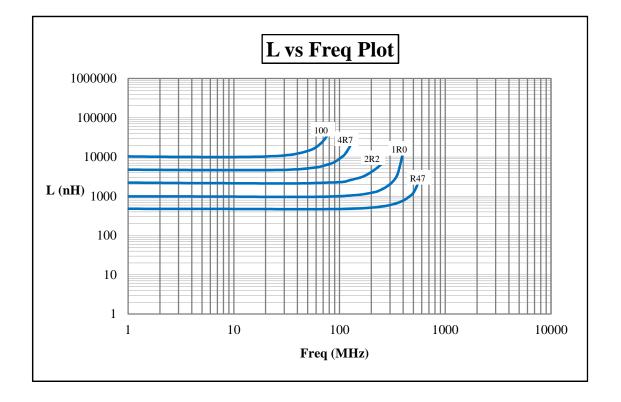


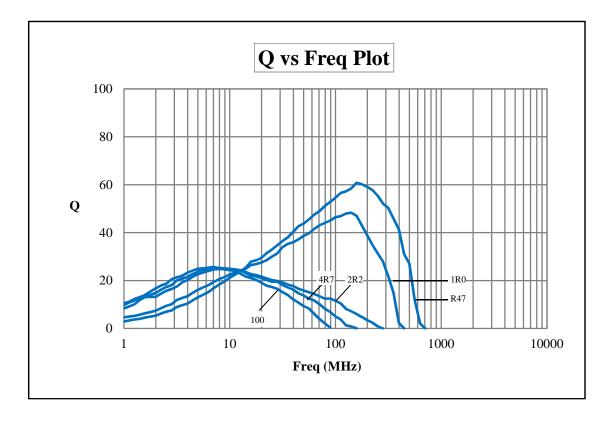
Solder bathtub temperature : 260° C max within 5secs. Preheating temperature : $100 \sim 130^{\circ}$ C deposit solder temperature. Composition of solder Sn-3Ag-0.5Cu

3

Soldering iron tip temperature : 350°C max / within 3 seconds.

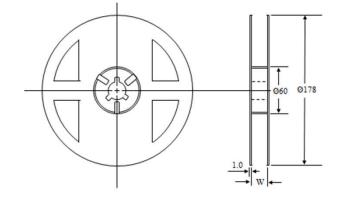
AOBA Technology (M) Sdn. Bhd.


Part No.	Inductance ¹ (uH)	Tolerance	Q ² Min	S.R.F. ³ Min (MHz)	RDC ⁴ Max (Ω)	IDC ⁵ Max (mA)	Marking
SWI1008CT R47 □-KI	0.47 @ 25MHz	K, J	45 @ 100MHz	450	1.18	470	R47
SWI1008CT R56 -KI	0.56 @ 25MHz	K, J	45 @ 100MHz	415	1.33	450	R56
SWI1008CT R68 □-KI	0.68 @ 25MHz	K, J	40 @ 100MHz	375	1.20	480	R68
SWI1008CT R75 □-KI	0.75 @ 25MHz	K, J	40 @ 100MHz	360	1.50	420	R75
SWI1008CT R82 D-KI	0.82 @ 25MHz	K, J	40 @ 100MHz	350	1.60	400	R82
SWI1008CT 1R0 D-KI	1.0 @ 25MHz	K, J	30 @ 50MHz	180	1.70	370	1R0
SWI1008FT 1R2 □-KI	1.2 @ 7.96MHz	K, J	20 @ 7.96MHz	280	0.50	760	1R2
SWI1008FT 1R5 □-KI	1.5 @ 7.96MHz	K, J	20 @ 7.96MHz	250	0.75	630	1R5
SWI1008FT 1R8 □-KI	1.8 @ 7.96MHz	K, J	20 @ 7.96MHz	200	0.75	630	1R8
SWI1008FT 2R2 □-KI	2.2 @ 7.96MHz	K, J	20 @ 7.96MHz	160	1.10	520	2R2
SWI1008FT 2R7 □-KI	2.7 @ 7.96MHz	K, J	20 @ 7.96MHz	135	1.10	520	2R7
SWI1008FT 3R3 □-KI	3.3 @ 7.96MHz	K, J	20 @ 7.96MHz	120	1.35	460	3R3
SWI1008FT 3R9 □-KI	3.9 @ 7.96MHz	K, J	20 @ 7.96MHz	105	1.50	420	3R9
SWI1008FT 4R7 □-KI	4.7 @ 7.96MHz	K, J	20 @ 7.96MHz	60	1.65	400	4R7
SWI1008FT 5R6 □-KI	5.6 @ 7.96MHz	K, J	20 @ 7.96MHz	80	1.80	370	5R6
SWI1008FT 6R8 □-KI	6.8 @ 7.96MHz	K, J	20 @ 7.96MHz	70	2.00	360	6R8
SWI1008FT 8R2 □-KI	8.2 @ 7.96MHz	K, J	20 @ 7.96MHz	50	2.60	320	8R2
SWI1008FT 100 □-KI	10 @ 2.52MHz	K, J	15 @ 2.52MHz	40	2.80	300	100

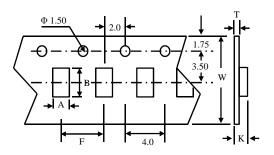

- 1. Inductance is measured in HP-4287A RF LCR meter with HP-16193 fixture.
- 2. Q is measured in HP-4287A RF LCR meter with HP-16193 fixture.
- 3. SRF is measured in ENA E5071B network analyzer or equivalent.
- 4. RDC is measured in HP-4338B milliohmeter or equivalent.

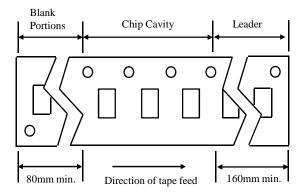
5. For 15 °C Rise. Remarks :

Unit weight = 0.025g (for ref.)


AOBA Technology (M) Sdn. Bhd.

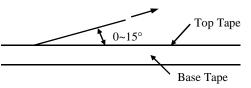
ITEM		CONDITION	SPECIFICATION		
	Inductance and	Measuring Frequency :	Within Specified Tolerance		
	Tolerance	As shown in Product Table			
	Quality Factor	Measuring Temperature : +25°C			
	Insulation	Measured at 100V DC between	1000 mega ohms minimum		
Electrical	Resistance	inductor terminals and center of case.			
Characteristics	Dielectric	Measured at 500V AC between	No damage occurs when		
	Withstanding	inductor terminals and center of case	the test voltage is applied.		
	Voltage	for a maximum of 1 minute.			
	Temperature	Over -40° C to $+85^{\circ}$ C at	+25 to 500 ppm/°C		
	Coefficient of	frequency specified in Product Table.	$TCL = L1 - L2 x 10^{6} (ppm / °C)$		
	Inductance (TCL)		L1(T1-T2)		
	Component	The component shall be reflow soldered onto a	Minimum 1Kg		
	Adhesion	P.C. Board ($240^{\circ}C \pm 5^{\circ}C$ for 20 seconds).			
	(Push Test)	Then a dynometer force gauge shall be applied			
		to any side of the component.			
Mechanical	Drop Test	The inductor shall be dropped two times on the	Change In Inductoria		
Characteristics	Diop lest	The inductor shall be dropped two times on the	Change In Inductance: No more than 5%		
-	Thermal Shock	concrete floor or the vinyl tile from 1M naturally. Each cycle shall consist of 30 minutes at -40°C			
		-	Change In Q: No more than 10%		
	Test	followed by 30 minutes at +85°C with a 5 minutes			
		transition time between temperature extremes.	Change In Appearance:		
	Caldanah ilita	Test duration is 10 cycles.	Without distinct damage A minimum of 80% of the metalized		
	Solderability	Dip pads in flux and dip in solder pot containing lead free solder at $240^{\circ}C \pm 5^{\circ}C$ for 5 seconds.	area must be covered with solder.		
	Resistance to	Dip the components into flux and dip	Change In Inductance:		
	Soldering Heat	into solder pot containing lead free solder	No more than 5%		
	Soldering Heat	at $260^{\circ}C \pm 5^{\circ}C$ for 5 ± 2 seconds.	Change In Q:		
	Vibration	Inductors shall be randomly vibrated at amplitude	No more than 10%		
	(Random)	of 1.5mm and frequency of 10-55Hz : 0.04G/Hz	Change In Appearance:		
	(Rundolli)	for a minimum of 15 minutes per axis for each of	Without distinct damage		
		the three axes.	White distance during e		
	Cold Temperature	Inductors shall be stored at temperature			
	Storage	of $-40^{\circ}C \pm 2^{\circ}C$ for 1000hrs (+48 -0 hrs.)			
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Then inductors shall be subjected to standard			
		atmospheric conditions for 1 hour.			
Endurance		After that, measurement shall be made.			
Characteristics	High Temperature	Inductors shall be stored at temperature			
	Storage	of $85^{\circ}C \pm 2^{\circ}C$ for 1000hrs (+48 -0 hrs.)			
	U	Then inductors shall be subjected to standard			
		atmospheric conditions for 1 hour.			
		After that, measurement shall be made.			
	Moisture	Inductors shall be stored in the chamber at 45°C	Inductors shall not have a		
	Resistance	at 90-95 R.H. for 1000 hours. Then inductors are	shorted or open winding.		
		to be tested after 2 hours at room temperature.	-		
	High Temperature	Inductors shall be stored in the chamber at +85°C			
	with Loaded	for 1000 hours with rated current applied.			
		Inductors shall be tested at the beginning of test at			
		500 hours and 1000 hours. Then inductors are to			


ABO 千如電子集團 ABC ELECTRONICS GROUP.


AOBA Technology (M) Sdn. Bhd.

Туре	Pcs/Reel	
SWI1008	2,000	

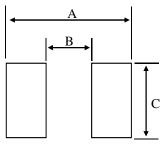



Туре	Chip Cavity		Insert Pitch	Tape Thickness		iess
	А	В	F	K	Т	W
SWI1008	2.20	2.83	4.00	1.75	0.22	8.00





Top Tape Strength


The top tape requires a peel-off force of 0.2 to 0.7N in the direction of the arrow as illustrated below.



Dimensions (unit : m/m)

Туре	А	В	С
SWI1008	3.00	1.20	2.20

Recommended Pattern

