RFbeam Microwave GmbH

K-MC3 RADAR TRANSCEIVER

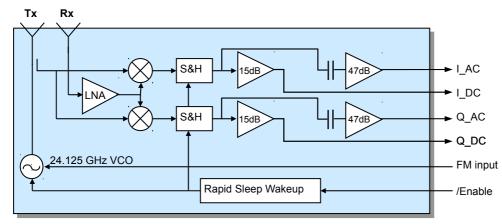
Datasheet

Features

- 24 GHz short range transceiver
- Beam aperture 25°/7°
- Electrically compatible to RFbeam K-MC2
- 180MHz sweep FM input
- High sensitivity, integrated RF/IF amplifier
- Dual 54 patch narrow beam antenna
- Buffered I/Q IF outputs
- Additional DC IF outputs
- RSW Rapid Sleep Wakeup
- Extremely compact:105x85x5 mm³ construction

Applications

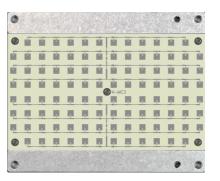
- Traffic supervision and counting
- Object speed measurement systems
- Ranging and distance detection
- Industrial sensors


Description

K-MC3 is a 108 patch doppler module with an asymmetrical narrow beam for long distance sensors. It is ideally suited for traffic supervision.

This module includes a RF low noise amplifier and two IF preamplifiers for both I and Q channels. The need for external analogue electronics will be significantly reduced by this feature. For special signal condition applications, an additional buffered Mixer DC output is provided. This greatly improves flexibility in FSK ranging applications. The unique "RSW" *R*apid Sleep *W*akeup function with <4us wakeup time makes this module ideal for battery operated equipment. Typical duty cycle in RWS mode may be < 5% with full movement detection capability by sampling the IF signals.

An extremely slim construction with only 6mm depth gives you maximum flexibility in your equipment design.


Powerful starterkits with signal conditioning and visualization are also available. (see <u>www.rfbeam.ch Download Section</u>)

Blockdiagram

Fig. 1: K-MC3 Blockdiagram

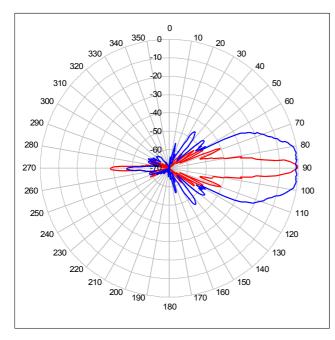
© RFbeam Microwave GmbH www.rfbeam.ch

Datasheet

Characteristics

Parameter	Conditions / Notes	Symbol	Min	Тур	Max	Unit
Operating conditions						
Supply voltage		V _{cc}	4.75	5.0	5.25	V
Supply current	Module enabled (Pin 1 = V_{IL})	Icc		70	100	mA
	Module RSW mode (Pin 1 = V _⊮)			7	10	mA
VCO input voltage		U _{vco}	1		10	V
VCO pin resistance	Internal pullup 10k	R _{vco}		10k		Ω
Operating temperature		T _{op}	-20		+80	°C
Storage temperature		T _{st}	-20		+80	°C
ower down/Enable						
Module power down	Input tied high with pullup 10k	VIH	V _{cc} -0.7		V _{cc} + 0.3	v
Module enable		VII	-0.2		2	v
Minimum enable time	Sample&Hold capacitor charged	ton	4		Z	μs
Maximum hold time	S&H error <10%	t _{off}			2	
	Charge injection visible at DC output	V _{step}		6	2	ms mV
Hold Step		Vstep		0		
ransmitter						
Transmitter frequency	U _{VCO} = 5V, T _{amb} =-20°C +60°C	f _{TX}	24.050	24.150	24.250	GHz
Frequency drift vs temp.	V _{cc} =5.0V, -20°C +60°C ^{Note 1}	Δf_{TX}		-1.0		MHz/°
Frequency tuning range		Δf_{vco}		180		MHz
VCO sensitivity		Svco		18		MHz/\
VCO Modulation Bandwidth	∆f=20MHz	B _{VCO}		3		MHz
Output power	EIRP	P _{TX}	+16	+19	+20	dBm
Output power deviation	Full VCO tuning range	ΔP_{TX}		+/- 1		dBm
Spurious emission	According to ETSI 300 440	P _{spur}			-30	dBm
Receiver						
Antenna gain	F _{TX} =24.125GHz Note 2	G _{Ant}		21		dBi
LNA gain	F _{RX} =24.125GHz	G _{LNA}		16		dB
Mixer Conversion loss	f _{IF} =500Hz	D _{mixer}		-6		dB
Receiver sensitivity	f _i =500Hz, B=1kHz, S/N=6dB	P _{RX}		-126		dBm
Overall sensitivity	f _{IF} =500Hz, B=1kHz, S/N=6dB	D _{system}		-145		dBc
- output						
IF output impedance	AC outputs	R _{IF_AC}		100		Ω
	DC outputs	RIF DC		100		Ω
IF Amplifier gain	AC outputs	GIF_AC		47		dB
	DC outputs	G _{IF_DC}		15		dB
I/Q amplitude balance	$f_{IF} = 500$ Hz, $U_{IF} = 100$ m V_{co} (AC outputs)	ΔUIF		3		dB
I/Q phase shift	f _{IF} =500Hz, U _{IF} =100mV _{pp} (_AC outputs)	φ	80	90	100	0
IF frequency range	-3dB Bandwidth (_AC outputs)	f _{IF AC}	40		15k	Hz
	-3dB Bandwidth (_DC outputs)	f _{IF DC}	0		500	kHz
IF noise voltage	f _{IF} =500Hz	UIFnoise		22		μV/√H
	f _{IF} =500Hz	UIFnoise	1	-93		dBV/H
IF output offset voltage	$V_{cc} = 5V, _AC \text{ outputs}$		2.0	2.5	3.0	V
Salpar Shoor Voltage	no object in range, VCO pin open, DC outputs		0.5	2.5	4.5	V
	Rejection supply pins to _AC outputs, 500Hz	D _{os_DC}	0.0	-24	J	dB

Datasheet


Parameter	Conditions / Notes	Symbol	Min Typ	Max Unit
Antenna				
Horizontal -3dB beamwidth	E-Plane	W _o	7	٥
Vertical -3dB beamwidth	H-Plane	W _e	25	٥
Horiz. sidelobe suppression		D _φ	-20	dB
Vert. sidelobe suppression		D ₀	-18	dB
Body				
Outline Dimensions	connector left unconnected		105x85x5	mm ³
Weight			102	g
Connector	Module side: AMP X-338069-8		8	pins

 Connector
 Module side: AMP X-338069-8
 8
 pins

 Note 1
 Transmit frequency stays within 24.050 to 24.250GHz over the specified temperature range if VCO pin is left open
 Note 2
 Theoretical value, given by design

Antenna System Diagram

This diagram shows module sensitivity (output voltage) in both azimuth and elevation directions. It incorporates the transmitter and receiver antenna characteristics.

Azimuth 7°, Elevation 25° At IF output voltage -6dB (corresponds to -3dB Tx power)

Fig. 2: Anntenna system diagram

Datasheet

FM Characteristics

Carrier frequency can be modulated by means of a voltage applied to the VCO input. This feature can be used for ranging applications using FMCW (see also Fig. 4) or FSK techniques.

FMCW needs good linearity in the frequency ramp. RFbeam provides a downloadable tool "VCO-Lin" that allows calculating the non-linearity using 3 known frequency versus VCO voltage points.

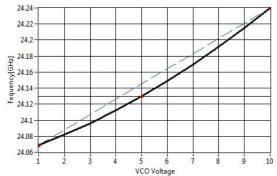


Fig. 3: Typical Frequency vs. VCO voltage

Pin Configuration

Pin	Description	Typical Value	
1	/Enable	GND: module active	
2	VCC	5V supply	
3	GND	0V supply	
4	IF output Q_AC	high gain output	
5	IF output I_AC	high gain output	
6	VCO in	$2.0V = f_0$	
7	IF output I_DC	low gain output	
8	IF output Q_DC	Low gain output	

Outline Dimensions

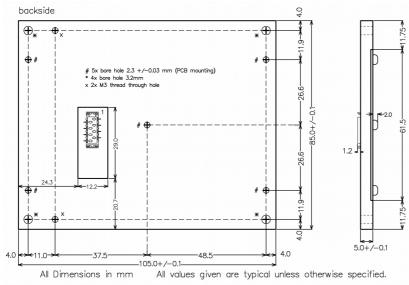
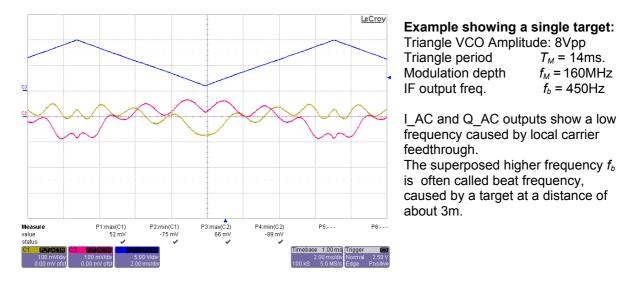


Fig. 4: Mechanical dimensions

 $T_{M} = 14$ ms. $f_{M} = 160 \text{MHz}$


 $f_{b} = 450 \text{Hz}$

Application Notes

Using VCO and Internal IF Amplifier

The IF amplifier provides two outputs per channel according to Fig. 1. These outputs are designed for different requirements in processing radar signals. Both I (imaginary) and Q (real) mixer signals are available. The I and Q signals are phase shifted by +90° or -90°, depending on the moving direction of objects in range.

FMCW generates an output signal even without an object in range because of the finite isolation between transmitter and receiver path. This effect is called self-mixing and leads to a DC signal that depends on the carrier frequency. Using FMCW, these signals move and may overdrive the 2nd stage (x AC outputs) of the IF amp under certain circumstances.

Fig. 5: x AC Output FMCW signals with triangle VCO and df = 85MHz

Distance calculation

$$\left| R = \frac{c_0}{2} \cdot \frac{f_b}{f_M} \cdot \frac{T_M}{2} \right| = 3 \text{m approx}$$

For legend refer to Fig. 5 Range, distance to target R

Speed of light (3 * 10⁸ m/s) Co

Please contact RFbeam Microwave GmbH for more informations on FMCW and also on FSK applications.

I_AC and Q_AC High Gain Outputs

These outputs provide high gain/low noise signals generated by doppler effects or FMCW. They directly can drive ADC input stages of microprocessors or DSPs. Even with 10Bit of resolution only, sensitive and relatively long range Doppler detections are possible. The outputs cover a frequency range of 40Hz ... 15kHz.

However, these outputs may saturate and clip because of too high input signals. In these cases you may use the x DC outputs described below.

RFbeam Microwave GmbH

K-MC3 RADAR TRANSCEIVER

Datasheet

Sampling sequence

To simplify signal processing sequence, output sampling may be done immediately after /ENABLE goes high (1) or before next /ENABLE (2).

Both methods have their advantages and disadvantages:

- Sampling point (1) contains a constant overshoot, i.e. sampled output signal becomes shifted by a constant DC component. There is no loss of sensitivity.
- Sampling point (2) corresponds to the real mixer output, as long as sleep time is short enough. But with longer off times, signal amplitude decreases.

As a rule of thumb: with a repeat frequency of 1 kHz (duty cycle of $7 \mu \text{s}/1\text{ms} = 0.7\%$) amplitude loss is 3dB approx. This situation is shown in the figure below.

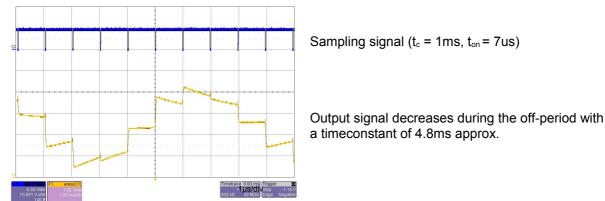


Fig. 8: x_AC output amplitude decreases during sleep time.

Datasheet

Sensitivity and Maximum Range

The values indicated here are intended to give you a 'feeling' of the attainable detection range with this module. It is not possible to define an exact RCS (radar cross section) value of real objects because reflectivity depends on many parameters. The RCS variations however influence the maximum range only by $\sqrt[4]{\sigma}$.

S:

f₀:

Maximum range for Doppler movement depends mainly on:

- Module sensitivity
- Carrier frequency
- Radar cross section RCS ("reflectivity") of the object σ^{1} :

-145dBc (@1kHz IF Bandwidth) 24.125GHz

 $1m^2$ approx. for a moving person

>50m² for a moving car

note ¹⁾ RCS indications are very inaccurate and may vary by factors of 10 and more.

The famous "Radar Equation" may be reduced for our K-band module to the following relation:

 $r = 0.0167 \cdot 10^{\frac{-s}{40}} \cdot \sqrt[4]{\sigma}$

Using this formula, you get an indicative detection range of

- > 70 meters for a moving person

- > 180 meters for a moving car

Please note, that range values also highly depend on the performance of signal processing, environment conditions (i.e. rain, fog), housing of the module and other factors. With K-MC3, you can achieve a maximum range of more than 500m when using high resolution AD-converters and selective FFT algorithms.

Datasheet Revision History

Version	Date	Changes
1.0	24-Mar-2010	initial release
1.1	13-May-2011	updated mechanical drawing
2.0	14-July-2011	Adapted to new hardware Revision G, valid from lot # LL1108

RFbeam does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and RFbeam reserves the right at any time without notice to change said circuitry and specifications.