

Preliminary Specification

PRODUCT NAME: RGC24128022WR000 PRODUCT NO.: 9921503000

	CUSTOMER	
	APPROVED BY	
DATE:		

RITDISPLAY CORP. APPROVED	

REVISION RECORD

REV.	REVISION DESCRIPTION	REV. DATE	REMARK
X01	■ INITIAL RELEASE	2011. 12. 29	

CONTENTS

ITEM	PAGE
1. SCOPE	4
2. WARRANTY	4
3. FEATURES	4
4. MECHANICAL DATA	5
5. MAXIMUM RATINGS	6
6. ELECTRICAL CHARACTERISTICS	7
6.1 D.C ELECTRICAL CHARACTERISTICS	
6.2 ELECTRO-OPTICAL CHARACTERISTICS	
7. INTERFACE	9
7.1 FUNCTION BLOCK DIAGRAM	
7.2 PANEL LAYOUT DIAGRAM	
7.3 PIN ASSIGNMENTS	
7.4 GRAPHIC DISPLAY DATA RAM ADDRESS MAP	
7.5 INTERFACE TIMING CHART	
8. POWER ON / OFF SEQUENCE & APPLICATION CIRCUIT	13
8.1 POWER ON / OFF SEQUENCE	
8.2 APPLICATION CIRCUIT	
8.3 COMMAND TABLE	
9. RELIABILITY TEST CONDITIONS	15
10. EXTERNAL DIMENSION	16
11. PACKING SPECIFICATION	17
12. APPENDIXES	18

1. SCOPE

The purpose of this specification is to define the general provisions and quality requirements that apply to the supply of display cells manufactured by RiTdisplay. This document, together with the Module Assembly Drawing, is the highest-level specification for this product. It describes the product, identifies supporting documents and contains specifications.

2. WARRANTY

RiTdisplay warrants that the products delivered pursuant to this specification (or order) will conform to the agreed specifications for twelve (12) months from the shipping date ("Warranty Period"). RiTdisplay is obligated to repair or replace the products which are found to be defective or inconsistent with the specifications during the Warranty Period without charge, on condition that the products are stored or used as the conditions specified in the specifications. Nevertheless, RiTdisplay is not obligated to repair or replace the products without charge if the defects or inconsistency are caused by the force majeure or the reckless behaviors of the customer.

After the Warranty Period, all repairs or replacements of the products are subject to charge.

3. FEATURES

- Small molecular organic light emitting diode.
- Color: White
- Panel resolution: 128*22
- Driver IC: SSD1305
- Excellent Quick response time: 10µs
- Extremely thin thickness for best mechanism design: 2.15 mm
- High contrast : 2000:1
- Wide viewing angle: 160°
- Strong environmental resistance.
- 8-bit 6800-series Parallel Interface, 8-bit 8080-series Parallel Interface, Serial Peripheral Interface, I²C Interface.
- Wide range of operating temperature : -40 to 70 °C
- Anti-glare polarizer.

4. MECHANICAL DATA

NO	ITEM	SPECIFICATION	UNIT
1	Dot Matrix	128 x 22	dot
2	Dot Size	0.43 (W) x 0.51 (H)	mm ²
3	Dot Pitch	0.46 (W) x 0.54 (H)	mm ²
4	Aperture Rate	88	%
5	Active Area	58.85 (W) x 11.85 (H)	mm ²
6	Panel Size	63.3 (W) x 20.8 (H)	mm ²
7*	Panel Thickness	1.42 ± 0.1	mm
8	Module Size	64.8 (W) x 59.5 (H) x 2.15 (T)	mm ³
9	Diagonal A/A size	2.36	inch
10	Module Weight	4.97 ± 10%	gram

^{*} Panel thickness includes substrate glass, cover glass and UV glue thickness.

5. MAXIMUM RATINGS

ITEM	MIN	MAX	UNIT	Condition	Remark
Supply Voltage (V _{DD})	-0.3	3.5	٧	Ta = 25°C	IC maximum rating
Supply Voltage (Vcc)	8	16	V	Ta = 25 ℃	IC maximum rating
Operating Temp.	-40	70	$^{\circ}$		
Storage Temp	-40	85	$_{\infty}$		
Humidity		85	%		
Life Time	25,000	-	Hrs	120 cd/m ² , 50% checkerboard	Note (1)
Life Time	30,000	-	Hrs	100 cd/m², 50% checkerboard	Note (2)
Life Time	37,000	-	Hrs	80 cd/m², 50% checkerboard	Note (3)

Note:

- (A) Under Vcc = 12V, $Ta = 25^{\circ}C$, 50% RH.
- (B) Life time is defined the amount of time when the luminance has decayed to less than 50% of the initial measured luminance.

(1) Setting of 120 cd/m²:

- Contrast setting: 0xC1

Frame rate: 105HzDuty setting: 1/22

(2) Setting of 100 cd/m^2 :

- Contrast setting: 0x9B

Frame rate : 105HzDuty setting : 1/22

(3) Setting of 80 cd/m²:

- Contrast setting: 0x76

Frame rate: 105HzDuty setting: 1/22

6. ELECTRICAL CHARACTERISTICS

6.1 D.C ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETERS	TEST CONDITION	MIN	TYP	MAX	UNIT
V _{CC}	Analog power supply (for OLED panel)		11.5	12	12.5	V
V_{DD}	Digital power supply		2.4	-	3.5	V
I _{DD}	Operating current for V_{DD} V_{DD} = 2.7V, V_{CC} = 12V, IREF = 10uA No loading, All Display ON	Contrast=FF	ı	100	300	uA
Icc	Operating current for V_{CC} $V_{DD} = 2.7V$, $V_{CC} = 12V$, IREF = 10uA, No loading, All Display ON	Contrast=FF	-	550	1000	uA
V _{IH}	Hi logic input level		0.8^* V_{DD}	-	-	V
V _{IL}	Low logic input level		0	-	0.2* V _{DD}	V
V _{OH}	Hi logic output level		0.9* V _{DD}	-	-	V
V _{OL}	Low logic output level		0	-	0.1* V _{DD}	V
	Segment on output	Contrast=FF	294	320	346	uA
	current V _{DD} =2.7V, V _{CC} =12V,	Contrast=AF	-	220	-	uA
I _{SEG}	IREF=10uA, Display on,	Contrast=7F	-	159	-	uA
	Segment pin under test is connected with a	Contrast=3F	-	79	-	uA
	20K resistive load to V _{SS}	Contrast=0F	-	19	-	uA

- 7 - REV.: X01 2011/12/29

6.2 ELECTRO-OPTICAL CHARACTERISTICS

PANEL ELECTRICAL SPECIFICATIONS

PARAMETER	MIN	TYP.	MAX	UNITS	COMMENTS
Normal mode current consumption	-	18	19	mA	All pixels on (1)
Standby mode current consumption	-	2	3	mA	Standby mode 10% pixels on (2)
Normal mode power consumption	1	216	228	mW	All pixels on (1)
Standby mode power consumption	-	24	36	mW	Standby mode 10% pixels on (2)
Pixel Luminance	80	100		cd/m ²	Display Average
Standby Luminance		20		cd/m ²	
CIEx (White)	0.24	0.28	0.32		CIE1931
CIEy (White)	0.28	0.32	0.36		CIE1931
Dark Room Contrast	2000:1				
Viewing Angle	160			degree	
Response Time		10		μs	

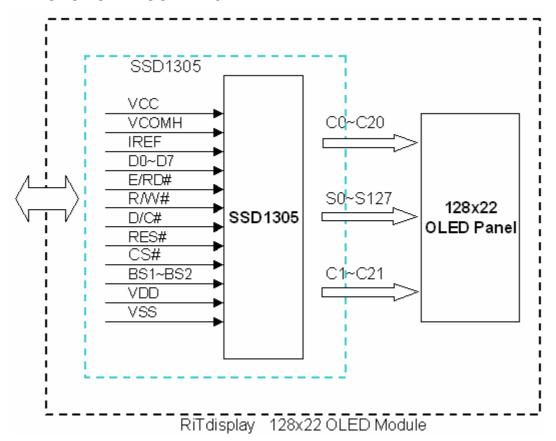
(1) Normal mode condition:

Driving Voltage: 12VContrast setting: 0x9BH

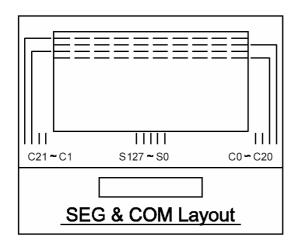
Frame rate: 105HzDuty setting: 1/22

(2) Standby mode condition:

- Driving Voltage: 12V


Contrast setting : 0x0FH

Frame rate: 105HzDuty setting: 1/22



7. INTERFACE

7.1 FUNCTION BLOCK DIAGRAM

7.2 PANEL LAYOUT DIAGRAM

- 9 - REV.: X01 2011/12/29

7.3 PIN ASSIGNMENTS

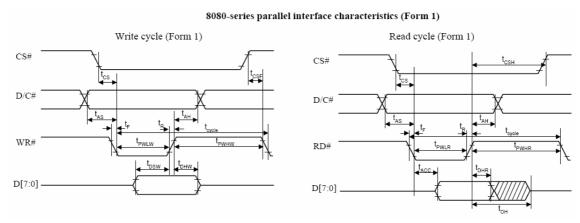
Pin No.	Pin Name	Description
1	NC	No connection.
2	VSS	This is a ground pin.
3	VSS	This is a ground pin.
4	NC	No connection.
5	VDD	Voltage power supply for logic
6	BS1	MCU interface selection pin.
7	BS2	MCU interface selection pin.
8	CS#	Chip select pin. The driver IC will be selected When CS pin is active low.
9	RES#	Hardware reset signal
10	D/C#	Data/Command control pin. When it pulled high, the input at D0-D7 is treated as display data. When it pulled low, the input at D0-D7 is transferred to command register
11	R/W#	Write strobe signal and reads data at the low level
12	E/RD#	Read strobe signal and reads data at the low level
13	D0	8-bit data bus
14	D1	8-bit data bus
15	D2	8-bit data bus
16	D3	8-bit data bus
17	D4	8-bit data bus
18	D5	8-bit data bus
19	D6	8-bit data bus
20	D7	8-bit data bus
21	IREF	The current reference input pin, this pin should be connected to ground through a resistor.
22	VCOMH	The COM voltage reference pin, this pin should be connected to ground through a capacitor.
23	VCC	Positive OLED high voltage power supply
24	NC	No connection.

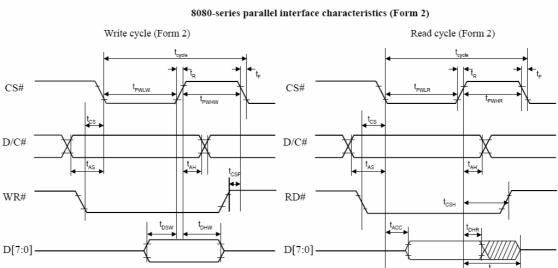
7.4 GRAPHIC DISPLAY DATA RAM ADDRESS MAP

The GDDRAM is a bit mapped static RAM holding the bit pattern to be displayed. The size of the RAM is $132 \times 64=8448$ bits.

For mechanical flexibility, re-mapping on both Segment and Common outputs can be selected by software.

				lress ='1' OUT	SEG0	SEG1	SEG2	SEG3	SEG4	SEG5	SEG6	SEG7		SEG128	SEG129	SEG130	SEG131
				Column Address p = '0' Remap ='1'	0x83h	0x82h	0x81h	408×0	$q_{ m H} L^{ m x}_{ m 0}$	ua/xo	0x7Dh	0x7Ch		0x03h	0x02h	0x01h	4 00×0
OUT Dire	Row Addres	redion = 'O'		Rеmaj	0x00h	0x01h	0x02h	0x03h	0x04h	0x05h	0x06h	0x07h		0x80h	0x81h	0x82h	0x83h
COM0	0x3Fh	0x00h		D0													
COM1	0x3Eh	0x01h		D1													
COM2	0x3Dh	0x02h		D2													
COM3	0x3Ch	0x03h	PAGE0	D3													
COM4	0x3Bh	0x04h	TACE	D4													
COM5	0x3Ah	0x05h		D5													
COM6	0x39h	0x06h	1	D6													
COM7	0x38h	0x07h	1	D7													
COM8	0x37h	0x08h		D0													
COM9	0x36h	0x09h	1	D1													
COM10	0x35h	0x0Ah	1	D2													
COM11	0x34h	0x0Bh	1	D3													
COM12	0x33h	0x0Ch	PAGE1	D4													
COM13	0x32h	0x0Dh	1	D5													\Box
COM14	0x31h	0x0Eh	1	D6													\Box
COM15	0x30h	0x0Fh	1	D7													\Box
COM16	0x2Fh	0x10h		DÓ												Н	\Box
COM17	0x2Eh	0x10h	1	D1													
COM18	0x2Dh	0x12h	1	D2	\vdash		\vdash					\vdash			\vdash	Н	\vdash
COM19	0x2Ch	0x12h	1	D2	\vdash	\vdash	\vdash					\vdash			\vdash	\vdash	\vdash
COM20	0x2Bh	0x13h	PAGE2	D4	\vdash		\vdash					\vdash			\vdash	Н	\vdash
COM21	0x2Ah	0x14h	1	D5													\mathbf{H}
COM21	0x2An 0x29h	0x15h	1	D6	\vdash	_	\vdash					\vdash			\vdash	\vdash	\mathbf{H}
COM23	0x29h	0x10h	1	D7	\vdash		\vdash					\vdash			\vdash	\vdash	\vdash
	UXZON	OX I / II		107													
:	0.079			I = 0									ı				
COM48	0x0Fh	0x30h		D0	_	_	_					_			_	\vdash	-
COM49	0x0Eh	0x31h		D1	<u> </u>		_					<u> </u>			_	\vdash	-
COM50	0x0Dh	0x32h		D2	_		_					_			_	\vdash	-
COM51	0x0Ch	0x33h	PAGE6	D3													
COM52	0x0Bh	0x34h		D4								_					
COM53	0x0Ah	0x35h		D5													
COM54	0x09h	0x36h		D6													
COM55	0x08h	0x37h		D7													
COM56	0x07h	0x38h]	D0													
COM57	0x06h	0x39h		D1													
COM58	0x05h	0x3Ah		D2													
COM59	0x04h	0x3Bh	PAGE7	D3													
COM60	0x03h	0x3Ch	LWGE/	D4													
COM61	0x02h	0x3Dh]	D5													
COM62	0x01h	0x3Eh	1	D6													
COM63	0x00h	0x3Fh	1	D7													
				<u>. – . </u>	_		_			_		_	1	_	_		

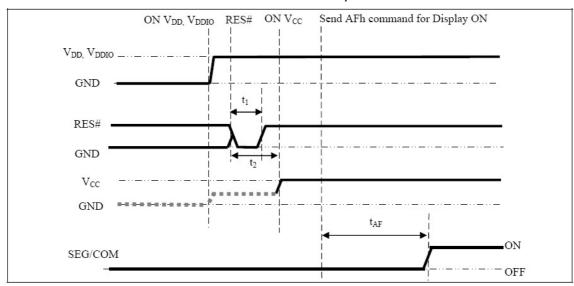



7.5 INTERFACE TIMING CHART

8080-Series MCU Parallel Interface Timing Characteristics

 $(\underline{V_{\text{DD}}}$ - V_{SS} = 2.4V to 3.5V, V_{DDIO} = V_{DD} , T_{A} = 25°C)

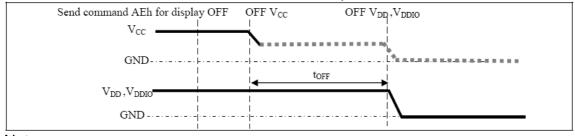
Symbol	Parameter	Min	Typ	Max	Unit
t _{cycle}	Clock Cycle Time	300	-	-	ns
t _{AS}	Address Setup Time	10	-	-	ns
t _{AH}	Address Hold Time	0	-	-	ns
t _{DSW}	Write Data Setup Time	40	-	-	ns
t _{DHW}	Write Data Hold Time	7	-	-	ns
t _{DHR}	Read Data Hold Time	20	-	-	ns
t _{OH}	Output Disable Time	-	-	70	ns
t _{ACC}	Access Time	-	-	140	ns
tpWLR	Read Low Time	120	-	-	ns
t _{PWLW}	Write Low Time	60	-	-	ns
t _{PWHR}	Read High Time	60	-	-	ns
t _{PWHW}	Write High Time	60	-	-	ns
t _R	Rise Time	-	-	40	ns
t _F	Fall Time	-	-	40	ns
t _{CS}	Chip select setup time	0	-	-	ns
t _{CSH}	Chip select hold time to read signal	0	-	-	ns
t _{CSF}	Chip select hold time	20	-	-	ns


8. POWER ON / OFF SEQUENCE & APPLICATION CIRCUIT

8.1 POWER ON / OFF SEQUENCE

Power ON sequence:

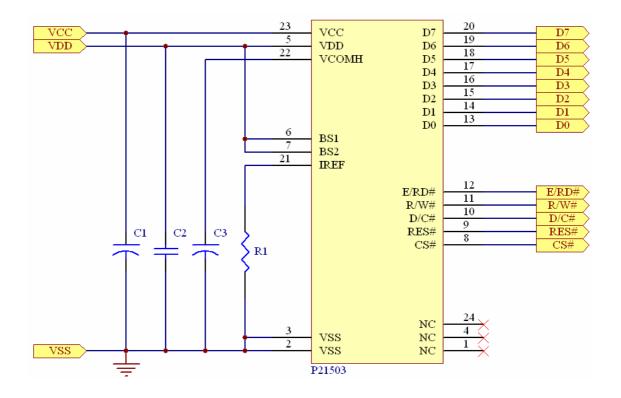
- 1. Power ON VDD, VDDIO.
- 2. After VDD, VDDIO become stable, set RES# pin LOW (logic low) for at least 3us(t1)⁽⁴⁾ and then HIGH (logic high).
- After set RES# pin LOW (logic low), wait for at least 3us(t2). Then Power ON VCC.(1)
- 4. After Vcc become stable, send command AFh for display ON. SEG/COM will be ON after 100ms(tAF).


The Power ON sequence

Power OFF sequence:

- 1. Send command AEh for display OFF.
- 2. Power OFF Vcc. (1),(2),(3)
- 3. Wait for toff. Power OFF VDD, VDDIO. (where Minimum toff=80ms, Typical toff=100ms)

The Power OFF sequence



Note:

- (1) Since an ESD protection circuit is connected between V_{DD} , V_{DDIO} and V_{CC} , V_{CC} becomes lower than V_{DD} whenever V_{DD} , V_{DDIO} is ON and V_{CC} is OFF as shown in the dotted line of V_{CC} in above figures.
- (2) V_{CC} should be kept disabled when it is OFF.
- (3) Power $Pins(V_{DD}, V_{CC})$ can never be pulled to ground under any circumstance.
- (4) The register values are reset after t₁.
- (5) V_{DD} should not be Power OFF before V_{CC} Power OFF.

8.2 APPLICATION CIRCUIT

Recommend components:

C1 \ C3 : 4.7uF/25V Tantalum type or VISHAY(572D475X0025A2T)

C2: 4.7uF/16V (0805) R1: 2M ohm 1% (0603)

This circuit is designed for 8080 interface.

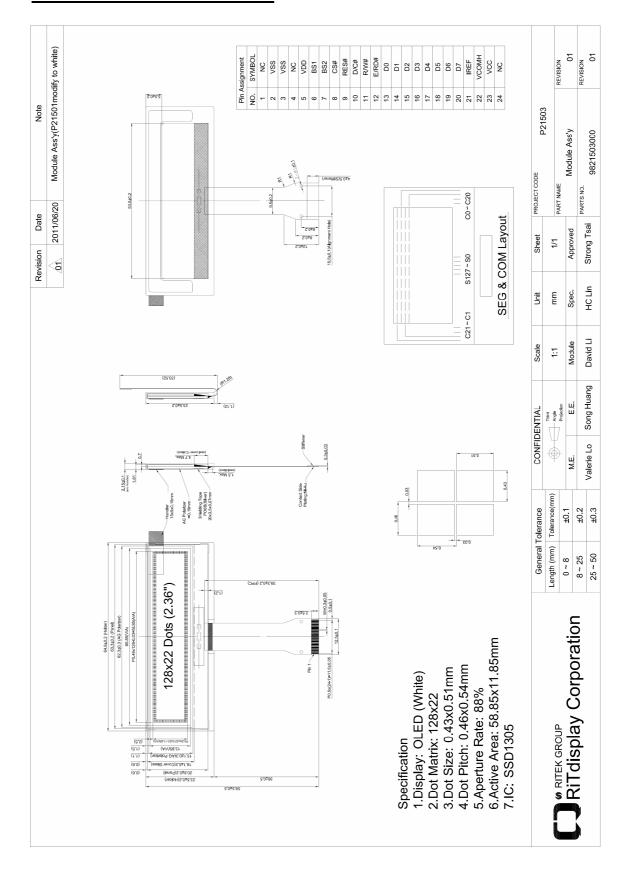
8.3 COMMAND TABLE

Refer to IC Spec.: SSD1305

9. RELIABILITY TEST CONDITIONS

No.	Items	Specification	Quantity
1	High temp. (Non-operation)	85℃, 240hrs	5
2	High temp. (Operation)	70 °C, 120hrs	5
3	Low temp. (Operation)	-40℃, 120hrs	5
4	High temp. / High humidity (Operation)	65℃, 90%RH, 120hrs	5
5	Thermal shock (Non-operation)	-40 °C ~85 °C (-40 °C /30min; transit /3min; 85 °C /30min; transit /3min) 1cycle: 66min, 100 cycles	5
6	Vibration	Frequency: 5~50HZ, 0.5G Scan rate: 1 oct/min Time: 2 hrs/axis Test axis: X, Y, Z	1 Carton
7	Drop	Height: 120cm Sequence : 1 angle \ 3 edges and 6 faces Cycles: 1	1 Carton
8	ESD (Non-operation)	Air discharge model, ±8kV, 10 times	5

Test and measurement conditions


- 1. All measurements shall not be started until the specimens attain to temperature stability.
- 2. All-pixels-on is used as operation test pattern.
- 3. The degradation of Polarizer are ignored for item 1, 4 & 5.

Evaluation criteria

- 1. The function test is OK.
- 2. No observable defects.
- 3. Luminance: > 50% of initial value.
- 4. Current consumption: within \pm 50% of initial value.

10. EXTERNAL DIMENSION

11. PACKING SPECIFICATION

TBD

12. APPENDIXES

APPENDIX 1: DEFINITIONS

A. DEFINITION OF CHROMATICITY COORDINATE

The chromaticity coordinate is defined as the coordinate value on the CIE 1931 color chart for R, G, B, W.

B. DEFINITION OF CONTRAST RATIO

The contrast ratio is defined as the following formula:

C. DEFINITION OF RESPONSE TIME

The definition of turn-on response time Tr is the time interval between a pixel reaching 10% of steady state luminance and 90% of steady state luminance. The definition of turn-off response time Tf is the time interval between a pixel reaching 90% of steady state luminance and 10% of steady state luminance. It is shown in Figure 2.

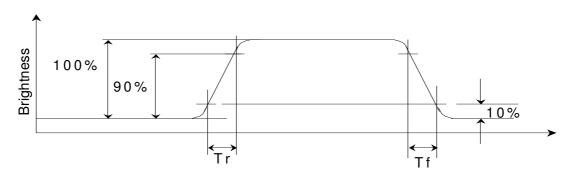
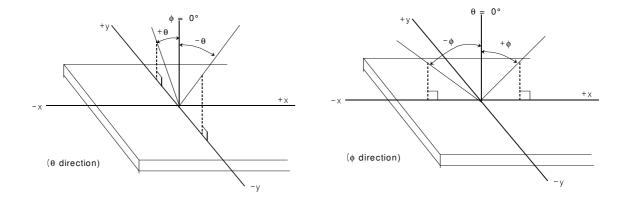
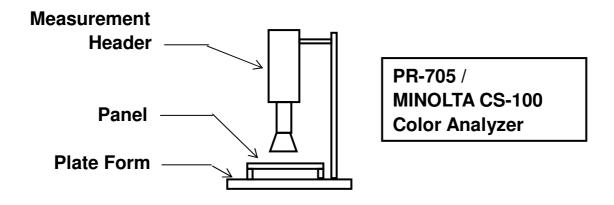


Figure 2 Response time

D. DEFINITION OF VIEWING ANGLE

The viewing angle is defined as Figure 3. Horizontal and vertical (H & V) angles are determined for viewing directions where luminance varies by 50% of the perpendicular value.




Figure 3 Viewing angle

APPENDIX 2: MEASUREMENT APPARATUS

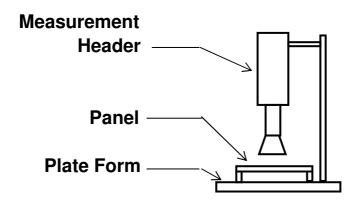
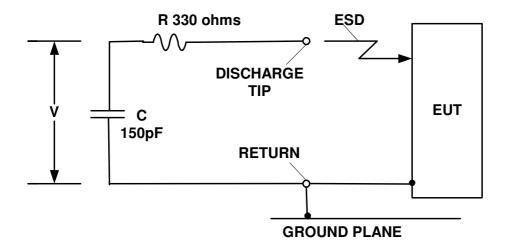

A. LUMINANCE/COLOR COORDINATE

PHOTO RESEARCH PR-705, MINOLTA CS-100

B. CONTRAST / RESPONSE TIME / VIEWING ANGLE


WESTAR CORPORATION FPM-510

Westar FPM-510
Display Contrast /
Response time /
View angle Analyzer

C. ESD ON AIR DISCHARGE MODE

APPENDIX 3: PRECAUTIONS

A. RESIDUE IMAGE

Because the pixels are lighted in different time, the luminance of active pixels may reduce or differ from inactive pixels. Therefore, the residue image will occur. To avoid the residue image, every pixel needs to be lighted up uniformly.